THE UNIVERSITY OF BRITISH COLUMBIA Department of Mechanical Engineering MECH 421 Mechatronic System Instrumentation

Spring 2016 Course Information

INSTRUCTOR

Dr. Xiaodong Lu, Kaiser 3103; XDLU@mech.ubc.ca

TEACHING ASSISTANTS

Jian Gao <j.gao@alumni.ubc.ca> TA office hours: 12-1pm Thursday in Kaiser 1230.

LECTURES

- Wed&Fri 3-4pm, CEME 1204.
- Learn a systematic way of integrating together what you have learned in previous courses, such as mechanical system, dynamics, vibration, electronics, motors, controls, and software. Design, implement, and have fun.

COURSE GRADING

Prelabs(15%)+Lab (20%)+Homeworks(10%)+Mid-term exam(25%)+ Final exam(30%)

LABS

Lab is a major component of MECH 421. Lab work will be performed in groups of 4~5 students. Each student will be assigned to one of the four lab sessions: Tue 8am-10am, Tue 10am-12pm, Thur 8am-10am, and Thur 10am-12pm. Lab place is Kaiser Room 1210. Lab manuals will be handed out in lectures and will also be posted on the web. Students have access to computers in Kaiser 1220 to prepare the pre-lab.

- Each group member should read the prelab and lab manual individually, think individually, and come up with individual solution.
- Each group member need to turn in individual prelab report. Your prelab should include your individual solution and the group discussion. Prelab report is due at the beginning of the lab. WITHOUT PRELAB REPORT, YOU WILL BE REFUSED TO DO THE LAB. Lab report is due at the beginning of the next lab, except the last one. Each group member should turn in individual lab report.

EXAMS

- Mid-term exam: 3-4pm on Feb 24th. 1 sheet of note (Letter-size, double-sided) allowed.
- Final exam: 2.5hrs. 2 sheets of note allowed (Letter-size, double-sided).

Lecture notes will be handed out in class. There is no required text book. All deadlines can be changed only for medical reasons.

TENTATIVE SCHEDULE

Week	Date	Lecture	Lab	Assignment
1	Jan	Introduction; Motor modeling; Block		HW1
	06/08	diagram; Laplace transform; Impulse		
		response; Frequency response;		
2	Jan	Bode plots; Step response;		HW2
	013/15	F-T domain relation; 1 st order		
		system.		
3	Jan	2 nd order system; General rules for		HW3
	20/22	Bode plot; Electrical network;		
		Superposition;		
4	Jan	Operational amplifier; Voltage		HW4
	27/29	follower; Non-inverting input circuit;		
		Gain-bandwidth product; Closed-		
		loop bandwidth; Loop transmission;		
		Crossover frequency;		
5	Feb	Feedback controller design; Nyquist		HW5
	03/05	stability criteria;		
6	Feb	PI current controller design and	Lab 1: Voltage	Hw6
	10/12	implementation;	stage design for	
			motor driving;	
Spring Break: Feb 15-19				
7	Feb	Mid-term exam; Motion loop shaping	Lab 2: Motor	
	24/26	techniques Lead compensation for	current loop	
		pure mass; Lead-lag compensation;	compensation;	
8	Mar	Two-wheeled robot demo; Control		
	02/04	system prototyping; Model		
		identification; PID controller design		
		for robot wheel tracking; Anti-windup		
		implementation; Aliasing;		
9	Mar	Discrete equivalence and simulation		HW7
	9/11	stability; Impedance modeling;		1.0.4/0
10	Mar	Impedance intuition on 2-Mass	Lab 3: Motor	HW8
	10/18	system; Physical intuition on control	position servo	
		system design;	loop design;	
11	Mar	Digital design using VHDL;		HVV9
- 10	23			
12	Mar 30,	Digital design using VHDL;	Lab 4: Conveyer	HVV10
	April 01		belt control;	
13	April	Power electronics;		
	06/08			