BIOFLUID DYNAMICS

MECH 433

Contact information
Dr. Dana Grecov
Mechanical Engineering
CEME 2060
822-6710
dgrecov@mech.ubc.ca

Class Format
Three 1-hour classes each week (M, W, F – 15.00-16.00)
SWNG 307

Course Description
The need for engineers with integrated multidisciplinary knowledge is expected to grow along with the rapid advances in biomedical science and technology. This course elaborates on the application of fluid mechanics principles to major human organ systems. The course is an introduction to physiologically relevant fluid flow phenomena, underlying physical mechanisms from an engineering perspective. The focus of the course is on the integration of various fluid mechanics concepts to address relevant problems of the human body’s systems.

Learning Objectives
By the end of the course it is expected that students will be able to:

- Understand the physiology and anatomy of studied systems,
- Analyze fluid mechanics models currently used for clinical research problems,
- Integrate fluid dynamics engineering concepts to examine and to model the biological flow in human body,
- Identify specific diseases and how they are related to fluid dynamics,
- Have the capability to carry out a biofluid dynamics design project.
Prerequisites
MECH 380.

Textbook
There is no required textbook for the course. Lecture notes will be provided on the course website. Informational sources could be found via the following textbooks:

A general fluid mechanics textbook will be useful (White, Cimbala

Assessment Strategies

Midterms
Three midterms of 1 hour duration will be given during the term. It will represent 66 % of the final grade. You must pass the midterms in order to pass the course.

Problem sets
After each major topic (5), an assignment based on a problem set will be distributed. It will represent 10% of the final grade.

Term Projects
Students will individually perform a biofluid dynamics design project from a list of possibilities provided by the instructor. Examples include: redesign of ventricular assisted device, design of a graft, redesign of an artificial heart valve. The design or redesign will be done using approaches presented in the lectures. It will represent 22% of the final grade.

Seminar (6-7)
Times and dates have to be decided. Attendance and participation are required (2%)

Grading System

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterms (3)</td>
<td>66%</td>
</tr>
<tr>
<td>Assignments (5)</td>
<td>10%</td>
</tr>
<tr>
<td>Term project</td>
<td>22%</td>
</tr>
<tr>
<td>Seminar (participation)</td>
<td>2%</td>
</tr>
</tbody>
</table>

Academic Integrity

The academic enterprise is founded on honesty, civility, and integrity. As members of this enterprise, all students are expected to know, understand, and follow the codes of conduct regarding academic integrity. At the most basic level, this means submitting only original work done by you and acknowledging all sources of information or ideas and attributing them to others as required. This also means you should not cheat, copy, or mislead others about what is your work. Violations of academic integrity (i.e., misconduct) lead to the breakdown of the academic enterprise, and therefore serious consequences arise and harsh sanctions are imposed. For example, incidences of plagiarism or cheating may result in a mark of zero on the assignment or exam and more serious consequences may apply if the matter is referred to the President’s Advisory Committee on Student Discipline. Careful records are kept in order to monitor and prevent recurrences.

Detailed Course Outline

1. **Review of basic fluid mechanics**
2. **Biorheology**
Constitutive equations. Non-Newtonian fluid models.

3. **Circulatory biofluid mechanics**

4. **Synovial fluid in joints**

5. **Respiratory biofluid mechanics**

6. **Flow and pressure measurement techniques in human body.**
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Synovial fluid in joints</td>
</tr>
<tr>
<td>10</td>
<td>Synovial fluid in joints</td>
</tr>
<tr>
<td>11</td>
<td>Respiratory biofluid mechanics</td>
</tr>
<tr>
<td>12</td>
<td>Respiratory biofluid mechanics</td>
</tr>
<tr>
<td>13</td>
<td>Flow and pressure measurement techniques in human body.</td>
</tr>
</tbody>
</table>