MECH 410D: ENGINEERING DYNAMICS

(September 2019)

Prerequisite: MECH 221 (Dynamics) or equivalent at UBC, or its equivalent at other universities.

Who should take this? Students who have taken a first course in engineering dynamics (see above) and who desire to understand the advanced dynamics tools used in transportation, robotics, gaming, sports, and space industries. *Emphasis is on vector and matrix methods used in modern computational dynamics tools*.

Course Objectives:

(1) *Perform* kinematic analysis (both in 2D and 3D) of machine components and mechanisms using *vector* methods; (2) *Apply* kinetics to deduce governing equations of motion using force (Newtonian) and energy (Lagrangian) methods; (3) *Analyse* gyroscopic motion and balancing of rigid rotors; (4) *Use* numerical methods to solve computational dynamics problem.

Course Outline: Read the sections indicated below from the course text book (TB) before each lecture and solve the assigned problems. Lectures: TU & TH 5–6:30 PM IN DMP 101.

Suggested Reading: (a) *Engineering Dynamics* by Jerry Ginsberg; (b) *Principles of Dynamics* by Donald T Greenwood; (c) *Engineering Dynamics– a primer* by Oliver M.O'Riley; (d) *Dynamics of multibody systems* by Ahmad A Shabana. Most of these books can be downloaded from the UBC library.

No	Topic (Approximate number of lectures)
1	Introduction (1L)
2	Mechanisms (8L)
2.1	Classification of mechanisms
2.2	Kinematics of Planar mechanisms
2.3	Kinematics of Spatial mechanisms
2.4	Force analysis
2.5	Application examples from machines and robotics
3	Rotating Systems (4L)
3.1	Gyroscopic motion
3.2	Rigid rotors
3.3	Balancing
4	Work-Energy Methods (5L)
4.1	Principle of virtual work
4.2	Lagrange equations
4.3	Constrained systems
4.4	Hamilton's principle
5	Computed Aided Multibody Dynamics (5L)
5.1	Formulation of matrix equations and solution algorithms
5.2	Introduction to computational miltibody dynamics
5.3	Applications from vehicle dynamics, robotics and
	aerospace
MECH	410D WILL BE ON CANVAS. 1L=1.5HRS.

Assessment: Midterm Exams (20%); Computer aided dynamics project (30%);

Final Exam (50%). All exams are take-home and will involve coding.

Exam dates: TBA

Contact: Srikanth (srikanth@mech.ubc.ca, CEME 2061)