MECH 421: Mechatronic System Instrumentation

2019-2020 Term 2

Last updated: Jan 17, 2020

Objectives

Learn a systematic way of integrating together what you have learned in previous courses, such as electronics, linear time-invariant (LTI) systems, sensors and actuators, mechanical systems, feedback control, and signal processing.

Contact Information

Instructor:Dr. Minkyun Noh(mnoh@mech.ubc.ca, KAIS 3105)TA:Zhao Wei (Victor) Lu(zhaoweil@mail.ubc.ca)Mohammadreza Rostam(reza.rostam@mech.ubc.ca)

Lectures

Lectures are a main means of delivering MECH 421 contents and announcements. There will be 25 lectures including an in-class mid-term exam. Lecture notes will be posted on CANVAS. There is no required text book.

- Time: Mon 3-4pm and Fri 10-11am
- Location: CEME 1215

Labs

Labs are a major component of MECH 421. There will be 4 labs during the course.

- Lab 1: Voltage power amplifier
- Lab 2: Transconductance power amplifier
- Lab 3: Motor position servo loop design
- Lab 4: Conveyer belt control

For each lab, students are asked to submit a prelab report and a lab report. Manuals for prelab and lab reports will be posted on CANVAS in advance. During the lab, students will perform activities in groups of 4-5 students. Group members are encouraged to collaborate during the lab activities, but NOT for the prelab and lab reports; each group member should come up with their own prelab and lab reports based on their individual effort. Each student MUST submit a prelab report to participate in the lab session. Late submission of a prelab report is not accepted. Late submission of a lab report will incur score deduction of 10% per day.

- Prelab report due: at the beginning of the lab session
- Lab report due: at the beginning of the next lab session (except the last one)

Due to the space constraint, students are distributed over 4 lab sessions (A to D). Please check which lab session you are assigned to.

- Time: Tue 8am-10am, Tue 10am-12pm, Thu 8am-10am, or Thu 10am-12pm
- Location: KAIS 1230

Problem Sets

There will be 10 problem sets during the course. Each problem set will be posted on CANVAS a week before the due date. Late submission will incur score deduction of 10% per day.

Problem set due: at the beginning of the Friday lecture

Exams

- Mid-term: Feb 24th in class. 1 sheet of note (Letter-size, double-sided) is allowed.
- Final: 2.5hrs. 2 sheets of note (Letter-size, double-sided) are allowed.

Tutorials

Time:Wed 2-3 pmLocation:West Mall Swing Space Room 205.

Office Hours

Instructor: Mon 2-3 pm at KAIS 3105, after lectures, or by appointment by appointment

Course Grading

Prelabs (15%) + Lab (20%) + Problem sets (10%) + Mid-term exam (25%) + Final exam (30%)

Course Schedule (Tentative)

Week	Date	Lecture	Labs	Psets
1	Jan 6	Introduction		
	Jan 10	Op-amp static model		
2	Jan 13	Linear circuits review		Ц\\/ /1
	Jan 17	LTI system frequency-domain representations		11001
3	Jan 20	Op-amp dynamic model		н\//2
	Jan 24	Feedback and stability		11002
4	Jan 27	Loop shaping review		HW3
	Jan 31	Voltage amplifier driving brushed DC motor		11000
5	Feb 3	Transconductance amplifier design	Lab 1	HW4
	Feb 7	Transconductance amplifier driving brushed DC motor	Lub I	1100-1
6	Feb 10	Instrumentation amplifier		HW5
	Feb 14	Op-amp non-idealities		11000
7	Feb 17	Midterm Break		
	Feb 21			
8	Feb 24	Mid-term exam	Lah 2	
	Feb 28	Dynamics of motion systems	LUDZ	
9	Mar 2	Loop shaping: lead controller design		HW6
	Mar 6	Loop shaping: PI controller design		11000
10	Mar 9	Digital control implementation via approximate mapping		HW/7
	Mar 13	Digital control design based on ZOH equivalent		
11	Mar 16	ADC topics: sampling, aliasing, quantization, etc.	Lab 3	HW8
	Mar 20	DAC topics: reconstruction, delay, etc.	Lub U	11000
12	Mar 23	Random noise and power spectral density		нма
	Mar 27	Electromagnetic interference reduction techniques		
13	Mar 30	Linear amplifier power analysis	Lah 4	HW10
	Apr 3	Introduction to power electronics		
14	Apr 6	Summary of the course		